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Abstract. An integrable vertex model associated to the Lie superalggli@l) is constructed

for the description of the spin quantum Hall critical phase. The model invatvestrix solutions

of the Yang—Baxter equation with respect to both the vector representatié¢2(if) and its dual

and an inhomogenity in the spectral parameters. On the torus the model can be mapped onto a
Chalker—Coddington-type network model.

1. Introduction

Recently, the problem of noninteracting quasiparticles in a disordered superconductor has
attracted attention. Effective field theory descriptions of various cases have been derived from
BCS mean-field Hamiltonians [1-4]. The quasiparticle Hamiltonian is invariant W§déR)
spin rotations. For aninhomogeneous superconductor, time-reversal invariance may be broken
by the presence of a magnetic field. The field theory is given by a chiral model associated to
the Lie super algebrasp (2n|2n) or by a nonlinear sigma model related to the symmetric space
osp(2n|2n)/gl(n|n) for preserved or broken time-reversal invariance, respectively. The second
type of modelis relevant to quasiparticles in the core of an isolated vortex in a disordered s-wave
superconductor [1] as well as to quasiparticles in a difty .- superconductor with an orbital
coupling to a magnetic field [2,5]. The coupling constant of the field theory represents the spin
conductivity. Its evolution with the length scale of the system given directly by the system size
or an inelastic scattering length due to a finite temperature is encoded by the beta-function of
the field theory [6]. For two-dimensional systems described by the chiral model, results from
renormalization group studies of nonlinear sigma models [7] indicate complete localization of
all quasiparticles. However, extended states may arise in the caseapitda|2n)/gl(n|n)
model. The corresponding weak localization effects have been investigated in [8].

In [2, 9], the analogy of the latter situation with the delocalization transition occurring
in integer quantum Hall systems has been emphasized. As in the field theoretic formulation
of the integer quantum Hall plateau transition [10], a topological term occurs in the action
of the nonlinear sigma model. Its coupling constant is interpreted as the quantized spin Hall
conductance characterizing each localized phase. Inview of the similarities, the network model
[11] developed to study the integer quantum Hall transition has been generalized for application
in the present context [9]. The original Chalker—Coddington model yields a semiclassical
description of a two-dimensional system of disordered electrons in a strong perpendicular
magnetic field. It considers the guiding centre motion of spin-polarized electrons along the
equipotential lines of a smoothly varying disorder potential. Quantum mechanical effects
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are taken into account allowing for scattering between different components of equipotentials
referring to the same value in the vicinity of saddle points. For simplification, these scattering
points are placed on the nodes of a regular lattice. Disorder is realized by random phases
acquired by the electrons drifting along the links between the scattering nodes. The generalized
model includes the spin degree of freedom. This is achieved by substituting the réhdpm
phases by randor®i (2) matrices. The scattering at each node is characterized by a transfer
matrix respecting spin reversal symmetry. A numerical investigation of this network model
seems to reveal the existence of a critical point separating two insulating phases with a change
of the quantized Hall conductance by two units. This conclusion is supported by a numerical
study of a description in terms of a supersymmetric spin chain [12]. Using the density matrix
renormalization group various universal critical properties such as the critical exponents related
to the localization length and the density of states as well as the dimerization exponent have
been obtained.

In this paper, an integrable vertex model is proposed for the description of the network
model. Making use of the isomorphism between the Lie super algekp&2|2) andsi(2|1)
the representation underlying the spin chain description and the network model is identified
with the vector representatiori of s/(2|1) associated to a simple root system with one odd
and one even simple root together with its dual representationThe Boltzmann weights
of the vertex model are given by the solution of the intertwining condition forRthmatrices
with respect to the tensor produdtsg V, V* ® V*, V ® V*andV* ® V. Furthermore, an
inhomogenity with respect to the spectral parameters oRtneatrices is incorporated. Both
the vertex model and the network model are considered on the torus. The correlation functions
of the network model can be extracted from those of the constructed integrable model.

After this work was completed, [12,13] appeared at the preprint server. In [13] a mapping
onto a percolation problem is used to determine critical exponents.

The paper is organized as follows. In section 2 definitions of the infinite-dimensional
algebra underlying the integrable structure of the vertex model are given. Sections 2 and 3
consider the affine quantum superalgetiyés/(2|1)) from which the integrable vertex model
related to the network model is obtained in the lignit> 1. The variouskR-matrices are given
in section 3. The integrable diagonal vertex model is introduced in section 4 and the relation
to the Chalker—Coddington-type model is pointed out in section 5.

2. U,(sl(2]1))

Models based on the quantum super algdlyyés(2/1)) have been investigated intensively

for their relevance to one-dimensional interacting electronic systems (see, for example, [15]
and references therein). In general, several systems of simple roots exist for a given Lie
super algebra [18]. The nonlinear sigma model related to the problems studied in [1, 9, 12]
is expressed in terms of a matrix field taking values in the quotiesyt(2n|2n)/ G L (n|n).

A model withn = 1 is sufficient to capture the two-point spin conductance. Correlators
involving more points require consideration of higher valuea.oMaking use of coherent
states [14], the nonlinear sigma model may be realized as the continuum limit of a lattice
model of Chalker—Coddington type (see section 5). To each link of this lattice model, a set of
possible states is attributed. Foe= 1, each set contains two bosonic and one fermionic state.
The sets form representation spaces of the Lie super algep(a|2) realized by bilinears

of two fermionic and one bosonic oscillator. The action of dbhp(2|2) generators on these
representation spaces determines the Boltzmann weights of an anisotropic version of the lattice
model. Thus, the model may be viewed as a construction based on the Lie superdi@bra
which is related twsp(2|2) by an isomorphism. Then the three-dimensional representation
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spaces correspond to the vector representatiati(8fl) or to its dual representation, where
the simple root system 6 (2|1) containsAone odd and one even root. The Cartan matrix for
the corresponding affine Lie super algebté?|1) is given by

0 -1 1
a= (—1 0o 1 ) . 1)
1 1 -2

U(;(sAl(2|1)) is defined as the unitalZ-graded associative algebra generated by
{en, fu, g, n =0, 1, 2} subject to the relations

gt = g gt
g ewq ™ = g ey

qh” fn’qih" = qiam’/ b (2)
hy _ o —hy
[env fn’] = 8n.n’%
q—q
and [19]
le1. e2lye2 — g tealer, e2], = 0 Lf1. folg2f2 — qfol f1. folg+ =0 @3)
[eo. e2]ge2 — g tezleo, e2], = 0 [fo. f2lg-1f2 = qfal fo, fol4+ =0
[[eo, e1ly, [eo, 21414 = O [[fo. filg2, [fo, folg2lg2 =0 @)

[es, 30]q7 [e1, eZ]q]q =0 [ f1, fO]q*l’ [f1. fZ]q*l]trl =0.

In (2) a,, denote the elements of the Cartan matrix (1}. i§ the usual Lie super bracket
[x,y] = xy — (=D)*I'Myx. The Serre relations (4) contajndeformed super commutators
defined by

[ern en’]q = éney — (_l)‘enl.len/lqun”,en’en (5)
[fn» fn’]q’l = fufw — (_l)lﬁl‘-lf’ﬂ‘qiam, S fu-
The Zo-grading| - | : U,(sI(211)) — Z is given byleo| = leal = |fol = Ifil = 1,

lez| = | f2| = 0 and|g™| = 0 Va. Supplementind/, (s/(2|1)) by a grading operataf with
commutators

[da en] = 811,Oen [da fn] = _an,Ofn [da d] = [d’ qih,,] =0 (6)
yields the affine quantum superalgel%a(?l(ﬂl)). U, (Q(2|1)) admits a comultiplication
Ae)=q"®e,+e, ®1  A(f)=f,®0qg " +1Q® f, A(g™) = g™ @ g*™

(7

and an antipode

S(en) = —q e, S(f) = — fug™ S(g*y = g™, 8)

3. The R-matrices

Most studies of integrable models reIated/L;(E?(2|1)) deal with constructions based on the
vector representation @f, (s/(2|1)). Guided by the structure of the nonlinear sigma models
and the network model, a three-dimensional module- (v, v, v3) is introduced with the
Z>-grading|vo| = |v1| = 0 and|vy| = 1. On the evaluation modulé. = V ® C[z,z7 1] a
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U, (37(2|1))-structure is given by

Hwo®Z) =v117" (17" =-1 7"

[ ®7") =12®7" 211 ®7") = -1 ® " 9)
fo(z®2") =ve®7"* eo(vo® ") = v, ® 7"t

hi(vo®z7") =0 ha(vo ® 7") = —vp ® 2" ho(vo®7") = Vo ® "

hi(v1®7") = -1 Q7" ho(v1 ®7") =1 ® 2" ho(v1®7") =0 (10)
hi(v2®7") = —12®7" ha(v2®2") =0 ho(vo ® 2") = v ® 2.
The graded Yang—Baxter equation is satisfied byRhmatrix with matrix elements
00 11 22 1-4¢*%
Ryp(2) = Rip(z) =1 R55(2) = 2
. 1- .
Ri() = q(z D ith i j=012 i#j
‘ g7~
i -1
Riy=L—=" for i~ 11)
q°—z
2
. -1
Ri‘/jl (2) = % for i<j
qc-—z

Rfj[(z) =0 for (k,D) # (i, j) or (k1) #(j,i).
Equation (11) refers to matrix eIemerRé} defined by

R ®v)) =Y RI(2)(ve ® ). (12)

k,l

The construction of a vertex model in the following section also involves the dual module
V* = (vg, v1, v3) with aU, (s1(2|1))-structure determined by

(@@l = D S@)  a € Uy(si(2lD) (13)
and the canonical pairin@;|v;) = §; ;.

The correspondin®-matrix Ry«y-(z) is related toRyy (z) by

REL @) = REG) (14)

if the normalizationRgfgi (z) = 1 is adopted. With an analogous choice of the overall

normalizations, the nonvanishing matrix elements of the miRexhatricesRyy-(z) and
RV*V(Z) are

RY@D=RE@®=1 R3S =Rl =1

Z2,, 4 2 -2
(g"—2) . q°(1—q %2)
R2Z (7)) — q R22(7) =
22 (2) 1o, 2:2(2) T1-g%
—1/,2
9 (q"—2) i q1—-2) o
R/ () = — L =7 R.7(2) =
ij (Z) l_Z i J(Z) l_qzz i ;ﬁ J (15)
(1=g2g? z2(g? — 1
szzj* (2) = _(_jjt\ﬂ Rij*ij(z) — _(qiz) i>j
5 12—Z 1;q Z
ji* _ z2(g°—Dg™* J*j _ 1jl 4 -1 .
R (2) = T io. R/ (z) = —(=DY 1— g% i<j

The R-matrix elements given in (11), (14) and (15) obey the Yang—Baxter equation on any
tensor product of three modules choseiify V*}:

RW1W2(Z)RW1W3(Zw)RW2W3(w) = RW2W3(w)RW1W3(Zw)RW1W2(Z)

) (16)
Wie{V,V* i=123.
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On each tensor product of two modulésr V*, the unitarity condition is satisfied:
Z(—l)‘k"‘”R;’;%z-l)Rﬁ (2) = Z( DRI (ZHREL (2) = (=118, 108

Z( l)‘kl \”Rn m( —l)Rkl (Z) Z( l)‘kl \”an (Z—l)le:; (Z) — (_l)|1|‘j‘81’m81’n. (17)

Integrable models related to f|n|te-d|men5|0nal representations/@fm) have been
considered quite extensively ([15-17] and references in [20, 21]) in context with link
polynomials [22] and with one-dimensional systems of interacting electrons 28jatrices
related to the vector representatiorliyf(s! (n|m)) have first appeared implicitly in solutions of

the Yang—Baxter equation for a particular nested model [24]. Later, rational and trigonometric
solutions of the Yang—Baxter equation associateglta|m) have been studied (see [20] for
references).

4. The diagonal vertex model

Boltzmann weightsﬁf‘; (z)} of an integrable vertex model follow from squtiohRf}(z)} of
the graded Young—Baxter equation by the transformation

RM(2) = (—DF1IRH (2). (18)
In the remainder, the operat®(z) = P¢ R(z) will also be used. The graded permutation
operatorP¢” is defined byPs" (w1 ® w,) = (—1)Wilw2ly, @ wy.

In this section, vertex models are constructed from the rational limits oRth@atrices
given in the preceding section. Expressions (11), (14) and (15) may be rewritten with the
replacements = € andz = e—2€".AIn the limite — O the Lie-superalgebra symmetry of the
R-matrix is restored. From th&, (s/(2|1)) R-matrices one obtains

Kl ey Y i1
Rij ) = Riejo ) = 2 dikdi +i S LU
* u .
R (u) = p— 15i,k8j,1 - (—D'”m‘st,jak,l (19)

+1

. u 1
REJ) = — 81481 — (D=8, ;b

In the following theR-matrices will also be expressed in terms of the graded permutation and
monoid operators or the quadratic Casidiof s/(2|1):

u 1 1
— Ruwos — id+—pP¢ ) —id —
Ryy = Ry«y u+l<|d+up ) id u+1A(C)

RVV*

r 1 1
p—] (|d— 0 > =id — mA(C) (20)

+1 1 1
Ryey = & <id - —08”) —id — ZA(C).
u u+l u

According to (19) the action of the graded monoid oper&&ronV ® V* andV*®V is given
by 0% (v1®v%) = §; ; Y o1 2(—DM v @up ando (v @v)) = & (=D D k—0.1.2 Vi Dk
To each link of a regular diagonal lattice (see figure 1) a statistical variable is associated
taking either values itv or V*. The moduled/ andV* are assigned to the lines according to
the alternating sequence
VR VIRVAVIIVRV QV® (21)
on the diagonal lines pointing from bottom left to top right and according to

L QVAVAVIIVIQVRVRV RV QVRVR--- (22)
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Figure 1. The diagonal vertex model. The
evolution operator is represented by the section
between the thick dotted lines. Arrows pointing
to northwest or northeast distinguish links with
modulesV from those with moduleg* (arrows
pointing southwest or southeast).

1 k rr k 1 I3 1* K
~ AN ~ ~ ~ ™ 4
\EX/ \‘\( ~ N o X

< ><' ’
/ R\ ,."‘/ ‘\‘\ / / \\\ d /‘ A ~
i j i j i* j i j
RY (x) R (xu) RE (ctu) REL()

y
~
v

« N Figure 3. The transfer matrif"" (x, u). Arrows pointing
NN > N N N » 15 1y Ly up orright represent links with the modulé and the
A Y ¥ AN v » remaining ones links with the modulé&*.

on the other diagonals. To the crossings, Boltzmann weights (18), (19) varying with two
parameters andu are associated. The assignment of the indices as well as the dependence
onx andu are indicated in figure 2. The model is considered for small valuesaofd large
values ofu. Thus expansions in and Yu are expected to be appropriate. On this vertex
model, a particular evolution operatbrx, u) may be introduced. Its graphical representation

is provided by the section of the lattice within the thick dotted lines shown in figure 1. Given
periodic boundary condition in the horizontal direction, the evolution operator can be related to
the row-to-row transfer matrix of the corresponding vertex model with horizontal and vertical
links (see figure 3). The latter has moduleandV * associated to its horizontal links following
sequence (21). An additional inhomogenity is allowed for by dividing the lattice into vertical
strips each of them including four vertical lines. To the vertical lines of every second strip the
modulesV andV* are assigned to according to the sequengV*® V*® V. In these strips

the assignment of indices and arguments of the Boltzmann weights to the links is obtained from
the one shown in figure 2 by means of a clockwise rotation . To the vertical lines in the
remaining strips the modules are associated according to the sedlied¥er V*Q V. Within
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these strips the assignment®fmatrices indicated in figure 2 applies with= 0. Imposing
again periodic boundary conditions in the horizontal direction the transfer nfatfixx, u) :
@VIV*QV*QVIV*@VRV*@ V)Y > (@VeV*eV*eVeV eVe Ve V)Vis
represented by a horizontal section of the lattice model including four neighbouring horizontal
lines as shown in figure 3. This transfer matfi¥’ (x, u) may be decomposed into transfer
matricesT @ (x, u),a = 1, 2:

T (x,u) = TP, ) TP, ) TP (x, ) TP (x, u). (23)

Each transfer matrig" @ (x, u) includes a single horizontal line with the auxiliary spdce
(V*) fora = 1 (@ = 2). The rational limit of the Yang—Baxter equations (16) implies the
commutation of any two transfer matric@$® (x, u), T (x',u’), a,b = 1,2. Thus two
composite transfer matricd$™ (x, u) and7T"" (x’, u’) commute. Due to the initial condition
R,.kj 0) = Rf‘fji(O) = 8,8, x and the rational limit of the unitarity property (17), the action of
the vertical strips withk = 0 amounts to a diagonal shift in the southwest—northeast direction.
Consequently, the action of the prod(&t™” (x, u))? is equivalent to the action of the evolution
operatorT (x, u) of the diagonal lattice model. In figures 1 and 3, the quadratic rediehg
enclosed by the dotted lines indicate corresponding sectiofi$xafu) and 7" (x, u). The
reasoning given above is a generalization of the argument presented in [25] for a homogeneous
eight-vertex model.

The integrable vertex model proposed in this section may be studied by means of
the algebraic Bethe ansatz. Since the transfer matfé&%x, 1) commute, the spectrum
of T™ (x,u) can be obtained by diagonalizirlg™ (x, u) and T® (x, u) separately. The
corresponding monodromy matricElg’)j(x, u) satisfy the commutation relations

YR OT e T w0 = Y T T ekl ) RY ()
l

k,l k

Lo * * : * * . (24)
> R TP ex T2 (o w) = Y TP L w TP (e, u) REE ().
k,l k,l

Starting from theRTT-equations (24) the algebraic Bethe ansatz procedure outlined in [26]
may be adopted. By now, a variety of vertex models or spin chains based on representations
of the Lie superalgebrad(2|1) andgl(2|1) have been investigated by means of this method
(see [16,17,27] and references given there). In particular, the algebraic Bethe ansatz has been
used in a study of another staggered vertex model involving the vector representati@lof

and an inhomogeneity in the spectral parameter [17].

5. The relation to the network model

Returning to the diagonal lattice model, let us denote the pair of horizontal and vertical
coordinates of a link byn = (m1, m,). Two links with positionsm andn may be chosen

on the lattice such that the moduifeis assigned to the link ak and its dual modulé’* to

the link atn. Then the two-point functiorIP;;i{;(x, u) is introduced as the probability that the
statistical variables,, andl, take the values; andv}, respectively:

8N—-18M—-1
ij* _ ol (t1,12+1),1(11+1,1,+1)
Pi(x,u) = ;&m,ui@zn.v; ]'[O ]'[O Ry s ™ (e ). (25)
k n=0 n=

The right-hand side has been written in terms of the matrix elemen0f = P# R(u).

To facilitate notation, the indices of the latter do not distinguish between links with module
V and those withV*. The partition function is normalized to one for the periodic boundary
condition in the vertical direction. Inthis case, the introduction of a modified evolution operator
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Figure 4. The modified evolution operator of the vertex model.

T (x, u) for the diagonal network model turns out to be useful. In the pictorial representation
it corresponds to the section between the dotted lines in figufé{x%.u) acts on the space of
states(®V ® V*)*. Within a block(®V ® V*)* the links may be labelled from 0 to 7 as
indicated in figure 4.

For thesi(2|1)-model one finds from (19)

|imO Ryv(x) = |im0 Ry-y+(x) =id (26)
METOO Rysy(u) = uﬂ)fj_ﬂoo Ryy«(u) = Py, (27)
Thus in the limitx — 0,4 — oo T'(x, u) reduces to the identity operator. An expansion in

and Yu yields

In7(x,u) = —(16N In(L +x) + 8N In(u +x)(u — x — 1) — 8Nx% + O(x%))id
8N—-1

+(2x — 2x2 + O(x®)) Z Py o
n=0
2% 2,2 N =
* ((H +x)(u—x—1) * (u+x)2u —x —1)? * O(ﬁ)) ;) !
+U(x, u) (28)

r

where the opera‘ltor@fjn+1 onWy actonV, ® V., or V*® V,.1 as the monoid operator and as
the identity operator on the remaining partigf;. Similarly, P,ﬁfﬁz actsonV, ® Vi, ® Vs
or V¥ ® V41 ® V¥, according toPs (a ® b ® ¢) = (—1)lallbiHlalleblich ¢ @ p @ a and as
the identity elsewhere. The last teli(x, u) contains only commutators &f¢” and O%":

X

N-1
X 0.2 0, 6.8 6, 9 8,9

Y (P02, 0P+ [P0, 071+ [F0, 0] 42—
k=0

u+x

Ux,u)=-2
(x,u) 1

N-1
13 12 2,4 3,5 3.4 4,6 57 5,6
x Y (P, 0 1+ [PEY + PO 021+ [A*Y + PET. 02°))
k=0

N-1
X X 1.3 0,1 3.4
_<u+x _u—x—l)z([Pk O+ 0T
k=0
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35 (@3 (5,6) 57 (4.5 (7.8
+HPTY, 0,57 =071 =[PV, 0,77 + 0,77

6,8 5,6 8,9 8,10 7.8 10,11)
HP%, 079 + 0% - [P0, 019 + 010

171 1 2w a0h @3
+5 - Z([Ok ) Ok - Ok ]
k=0

2\u+x u—x-1
_[0153,4)7 0152,3) + 0154,5)] _ [0155,6)’ 0154,5) + 0]56,7)]
O™, 007 + 0] + 0(:) +0( ;) (29)
u

In (29) the graded permutation and monoid operators are abbrevia®d's§) = P§i gsiva
and 0" = 0§, guuiss- FOri > 7, the positions 8V — 1) +i andi are identified. If
periodic boundary conditions in the vertical direction are applied to the pradust u)),
the contributions front/ (x, ) cancel. Then the partition function is given by

Z=(1+0*A+x) u+x)(u—x — 1)

8N—-1
XtrgWNl exp< Z In <1+ P nn+2>

Zx 8N—-1
8r
+MIn <1+(u+x)(u—x—l)> Z Onm)} (30)

n=0

Hererrgw, denotes the graded trace over the space of siifes= (®V ® V54, The
remainder of this section specializes to the cAlse- pM, p € N. In the nonrational case
each term in the expansion of the partition sum is represented by a link [28] built from the
braid, the monoid and the identity operators. Fg¢ j, the two-point functionP’:/" (x, u)
selects all the links with the positioms, n placed on different components of the Ilnk In the
rational limit the braid operator is substituted by the permutation operator. The set of links
generated only from the identity and the monoid operators in (30) coincides with the links of
a diagonal lattice model of Chalker—Coddington type [11]. In contrast to the lattice model
construction described in the preceding section, all lattice links of a Chalker—Codington-type
model with even horizontal position carry the modulsvhile the dual modulé&* is assigned

to all links with odd horizontal position. Thus only two types of vertices arise. An anisotropic
version of the model has Boltzmann weights

WEL () = 8180 + (—=D)y8; ;8 W () = 880 + (=DM ys; 1801 (31)

Herei, j, k, [ refer to the lower left and right and to the upper left and right entry of each
diagonal vertex, respectively. Periodic boundary conditions are applied in both directions.
The model consists out ofi2 raws of links. To relate horizontal and vertical positions of both
lattice models, an evolution operatBf € (y) is introduced for the Chalker—Coddington-type
model as indicated by the dotted lines in figure 5 where the lattice links with horizontal positions
mi1=8n+i,i =0,1,...,7 are specified. For these links, the vertical positiph= 0 is
introduced. The periodic boundary condition in the horizontal direction of the diagonal vertex
model yields a periodic boundary condition with respect to the vertical positior ¢¢ (y)

acts on the spacg@®V ® V*)*V. The appropriate mapping : Xy — Y.y Of a subset

X .y Of lattice positiongmy, m»} of the network model in section 4 to the 3&t ,, of lattice
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Figure 5. The network model.

positions{m1, m,} of the Chalker—Coddington-type model is given by
o(8n,2l) = (8n, 2) oBn+4,21+4) =08n+4,21+1)
ocBn+1,2+3)=Bn+12+1) oBn+5,2)=(8n+52)

cBn+2,2+5 =B8Bn+22+1) cBn+6,21+3)=Bn+6,2+1) (32)
oBn+3,2)=(8n+3 2) oBn+7,20+5 =B8n+7,20+1)

and

oBn,20+3)=0@n,2+4) =08n,2+5 =(8n,2+1)
cBn+1,20-2)=0@Bn+1,21-1)=0@n+12)=@Bn+12)
cBn+22)=0@n+2,21+1)=0@n+2,20+2)=B8n+22)
cBn+320+3)=0cBn+3,2+4) =0Bn+3,20+5 =OBn+3,2/+1) (33)

cBn+4,21-1)=0Bn+4,2))=0@n+4,21+1)=Bn+4,2)

o8 +52+3)=0c@n+52+4) =0(81+52 +5 = Bn+52 +1)
cBn+6,21—2)=0Bn+6,21 —1)=0Bn+6,2) = (8n+6,2])
oBn+7,2)=0@n+7,20+1)=0c@n+7,22+2)=8n+7,2)

withn =0,1,...,N—1land =0,1,..., M —1. In(33) the vertical positiona, = —1 and
my = —2 are identified withn, = 8M — 1 andm, = 8M — 2, respectively. A link composed
out of/ monoid operators from (30) and identity operators has a weigkat (Mﬁ)l.
Thus the two-point functiorﬁ;{';(y) obtained fromP//. (x, v) after discarding all links with

contributions of the permutation operators equals the two-point funQ[',(fﬁl)’a(n) (y) of an
anisotropic Chalker—Coddington modehif andn are chosen from the subsgj, y:

P d P ij*
P;{n<y>=exp<ya> Priln0)| = Ogmom®)  for m.neXyy.  (34)

x=v=0
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