
An integrable sl(2|1) vertex model for the spin quantum Hall critical point

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys. A: Math. Gen. 32 7071

(http://iopscience.iop.org/0305-4470/32/41/303)

Download details:

IP Address: 171.66.16.111

The article was downloaded on 02/06/2010 at 07:46

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/41
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.32 (1999) 7071–7082. Printed in the UK PII: S0305-4470(99)03077-2

An integrable sl(2|1) vertex model for the spin quantum Hall
critical point

R M Gade
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Abstract. An integrable vertex model associated to the Lie superalgebrasl(2|1) is constructed
for the description of the spin quantum Hall critical phase. The model involvesR-matrix solutions
of the Yang–Baxter equation with respect to both the vector representation ofsl(2|1) and its dual
and an inhomogenity in the spectral parameters. On the torus the model can be mapped onto a
Chalker–Coddington-type network model.

1. Introduction

Recently, the problem of noninteracting quasiparticles in a disordered superconductor has
attracted attention. Effective field theory descriptions of various cases have been derived from
BCS mean-field Hamiltonians [1–4]. The quasiparticle Hamiltonian is invariant underSU(2)
spin rotations. For an inhomogeneous superconductor, time-reversal invariance may be broken
by the presence of a magnetic field. The field theory is given by a chiral model associated to
the Lie super algebraosp(2n|2n) or by a nonlinear sigma model related to the symmetric space
osp(2n|2n)/gl(n|n) for preserved or broken time-reversal invariance, respectively. The second
type of model is relevant to quasiparticles in the core of an isolated vortex in a disordered s-wave
superconductor [1] as well as to quasiparticles in a dirtydx2−y2 superconductor with an orbital
coupling to a magnetic field [2,5]. The coupling constant of the field theory represents the spin
conductivity. Its evolution with the length scale of the system given directly by the system size
or an inelastic scattering length due to a finite temperature is encoded by the beta-function of
the field theory [6]. For two-dimensional systems described by the chiral model, results from
renormalization group studies of nonlinear sigma models [7] indicate complete localization of
all quasiparticles. However, extended states may arise in the case of theosp(2n|2n)/gl(n|n)
model. The corresponding weak localization effects have been investigated in [8].

In [2, 9], the analogy of the latter situation with the delocalization transition occurring
in integer quantum Hall systems has been emphasized. As in the field theoretic formulation
of the integer quantum Hall plateau transition [10], a topological term occurs in the action
of the nonlinear sigma model. Its coupling constant is interpreted as the quantized spin Hall
conductance characterizing each localized phase. In view of the similarities, the network model
[11] developed to study the integer quantum Hall transition has been generalized for application
in the present context [9]. The original Chalker–Coddington model yields a semiclassical
description of a two-dimensional system of disordered electrons in a strong perpendicular
magnetic field. It considers the guiding centre motion of spin-polarized electrons along the
equipotential lines of a smoothly varying disorder potential. Quantum mechanical effects
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are taken into account allowing for scattering between different components of equipotentials
referring to the same value in the vicinity of saddle points. For simplification, these scattering
points are placed on the nodes of a regular lattice. Disorder is realized by random phases
acquired by the electrons drifting along the links between the scattering nodes. The generalized
model includes the spin degree of freedom. This is achieved by substituting the randomU(1)
phases by randomU(2) matrices. The scattering at each node is characterized by a transfer
matrix respecting spin reversal symmetry. A numerical investigation of this network model
seems to reveal the existence of a critical point separating two insulating phases with a change
of the quantized Hall conductance by two units. This conclusion is supported by a numerical
study of a description in terms of a supersymmetric spin chain [12]. Using the density matrix
renormalization group various universal critical properties such as the critical exponents related
to the localization length and the density of states as well as the dimerization exponent have
been obtained.

In this paper, an integrable vertex model is proposed for the description of the network
model. Making use of the isomorphism between the Lie super algebrasosp(2|2) andsl(2|1)
the representation underlying the spin chain description and the network model is identified
with the vector representationV of sl(2|1) associated to a simple root system with one odd
and one even simple root together with its dual representationV ∗. The Boltzmann weights
of the vertex model are given by the solution of the intertwining condition for theR-matrices
with respect to the tensor productsV ⊗ V , V ∗ ⊗ V ∗, V ⊗ V ∗ andV ∗ ⊗ V . Furthermore, an
inhomogenity with respect to the spectral parameters of theR-matrices is incorporated. Both
the vertex model and the network model are considered on the torus. The correlation functions
of the network model can be extracted from those of the constructed integrable model.

After this work was completed, [12,13] appeared at the preprint server. In [13] a mapping
onto a percolation problem is used to determine critical exponents.

The paper is organized as follows. In section 2 definitions of the infinite-dimensional
algebra underlying the integrable structure of the vertex model are given. Sections 2 and 3
consider the affine quantum superalgebraUq(ŝl(2|1)) from which the integrable vertex model
related to the network model is obtained in the limitq → 1. The variousR-matrices are given
in section 3. The integrable diagonal vertex model is introduced in section 4 and the relation
to the Chalker–Coddington-type model is pointed out in section 5.

2. Uq(ŝl(2|1))

Models based on the quantum super algebraUq(sl(2|1)) have been investigated intensively
for their relevance to one-dimensional interacting electronic systems (see, for example, [15]
and references therein). In general, several systems of simple roots exist for a given Lie
super algebra [18]. The nonlinear sigma model related to the problems studied in [1, 9, 12]
is expressed in terms of a matrix field taking values in the quotientOSp(2n|2n)/GL(n|n).
A model with n = 1 is sufficient to capture the two-point spin conductance. Correlators
involving more points require consideration of higher values ofn. Making use of coherent
states [14], the nonlinear sigma model may be realized as the continuum limit of a lattice
model of Chalker–Coddington type (see section 5). To each link of this lattice model, a set of
possible states is attributed. Forn = 1, each set contains two bosonic and one fermionic state.
The sets form representation spaces of the Lie super algebraosp(2|2) realized by bilinears
of two fermionic and one bosonic oscillator. The action of theosp(2|2) generators on these
representation spaces determines the Boltzmann weights of an anisotropic version of the lattice
model. Thus, the model may be viewed as a construction based on the Lie superalgebrasl(2|1)
which is related toosp(2|2) by an isomorphism. Then the three-dimensional representation
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spaces correspond to the vector representation ofsl(2|1) or to its dual representation, where
the simple root system ofsl(2|1) contains one odd and one even root. The Cartan matrix for
the corresponding affine Lie super algebraŝl(2|1) is given by

a =
( 0 −1 1
−1 0 1
1 1 −2

)
. (1)

U ′q(ŝl(2|1)) is defined as the unitalZ-graded associative algebra generated by
{en, fn, q±hn , n = 0, 1, 2} subject to the relations

qhnqhn′ = qhn′qhn
qhnen′q

−hn = qann′ en′
qhnfn′q

−hn = q−ann′fn′
[en, fn′ ] = δn,n′ q

hn − q−hn
q − q−1

(2)

and [19]

[e1, e2]qe2 − q−1e2[e1, e2]q = 0 [f1, f2]q−1f2 − qf2[f1, f2]q−1 = 0
[e0, e2]qe2 − q−1e2[e0, e2]q = 0 [f0, f2]q−1f2 − qf2[f0, f2]q−1 = 0

(3)

[[e0, e1]q, [e0, e2]q ]q = 0 [[f0, f1]q−1, [f0, f2]q−1]q−1 = 0

[[e1, e0]q, [e1, e2]q ]q = 0 [[f1, f0]q−1, [f1, f2]q−1]q−1 = 0.
(4)

In (2) ann′ denote the elements of the Cartan matrix (1). [,] is the usual Lie super bracket
[x, y] = xy − (−1)|x|·|y|yx. The Serre relations (4) containq-deformed super commutators
defined by

[en, en′ ]q = enen′ − (−1)|en|·|en′ |qann′ en′en
[fn, fn′ ]q−1 = fnfn′ − (−1)|fn|·|fn′ |q−ann′fn′fn.

(5)

The Z2-grading | · | : Uq(ŝl(2|1)) → Z2 is given by |e0| = |e1| = |f0| = |f1| = 1,
|e2| = |f2| = 0 and|q±hn | = 0 ∀n. SupplementingU ′q(ŝl(2|1)) by a grading operatord with
commutators

[d, en] = δn,0en [d, fn] = −δn,0fn [d, d] = [d, q±hn ] = 0 (6)

yields the affine quantum superalgebraUq(ŝl(2|1)). U ′q(ŝl(2|1)) admits a comultiplication

1(en) = qhn ⊗ en + en ⊗ 1 1(fn) = fn ⊗ q−hn + 1⊗ fn 1(q±hn) = q±hn ⊗ q±hn
(7)

and an antipode

S(en) = −q−hnen S(fn) = −fnqhn S(q±hn) = q∓hn . (8)

3. TheR-matrices

Most studies of integrable models related toUq(ŝl(2|1)) deal with constructions based on the
vector representation ofUq(sl(2|1)). Guided by the structure of the nonlinear sigma models
and the network model, a three-dimensional moduleV = (v1, v2, v3) is introduced with the
Z2-grading|v0| = |v1| = 0 and|v2| = 1. On the evaluation moduleVz = V ⊗ C[z, z−1] a
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U ′q(ŝl(2|1))-structure is given by

f2(v0⊗ zn) = v1⊗ zn e1(v2⊗ zn) = −v1⊗ zn
f1(v1⊗ zn) = v2⊗ zn e2(v1⊗ zn) = −v0⊗ zn
f0(v2⊗ zn) = v0⊗ zn−1 e0(v0⊗ zn) = v2⊗ zn+1

(9)

h1(v0⊗ zn) = 0 h2(v0⊗ zn) = −v0⊗ zn h0(v0⊗ zn) = v0⊗ zn
h1(v1⊗ zn) = −v1⊗ zn h2(v1⊗ zn) = v1⊗ zn h0(v1⊗ zn) = 0

h1(v2⊗ zn) = −v2⊗ zn h2(v2⊗ zn) = 0 h0(v2⊗ zn) = v2⊗ zn.
(10)

The graded Yang–Baxter equation is satisfied by theR-matrix with matrix elements

R00
00(z) = R11

11(z) = 1 R22
22(z) =

1− q2z

q2 − z
R
ij

ij (z) =
q(1− z)
q2 − z with i, j = 0, 1, 2 i 6= j

R
ji

ij (z) =
q2 − 1

q2 − z for i > j

R
ji

ij (z) =
z(q2 − 1)

q2 − z for i < j

Rklij (z) = 0 for (k, l) 6= (i, j) or (k, l) 6= (j, i).

(11)

Equation (11) refers to matrix elementsRklij defined by

R(z)(vi ⊗ vj ) =
∑
k,l

Rklij (z)(vk ⊗ vl). (12)

The construction of a vertex model in the following section also involves the dual module
V ∗ = (v∗0, v∗1, v∗2) with aUq(sl(2|1))-structure determined by

〈a(v∗)|v〉 = (−1)|a|·|v
∗|〈v∗|S(a)v〉 a ∈ Uq(sl(2|1)) (13)

and the canonical pairing〈v∗i |vj 〉 = δi,j .
The correspondingR-matrixRV ∗V ∗(z) is related toRVV (z) by

Rk
∗l∗
i∗j∗(z) = Rlkji(z) (14)

if the normalizationR0∗0∗
0∗0∗ (z) = 1 is adopted. With an analogous choice of the overall

normalizations, the nonvanishing matrix elements of the mixedR-matricesRVV ∗(z) and
RV ∗V (z) are

R00∗
00∗ (z) = R11∗

11∗ (z) = 1 R0∗0
0∗0(z) = R1∗1

1∗1(z) = 1

R22∗
22∗ (z) =

q−2(q4 − z)
1− z R2∗2

2∗2(z) =
q2(1− q−2z)

1− q2z

R
ij∗
ij∗ (z) =

q−1(q2 − z)
1− z R

i∗j
i∗j (z) =

q(1− z)
1− q2z

i 6= j

R
jj∗
ii∗ (z) = −(−1)|i|

(1− q−2)q2j

1− z R
j∗j
i∗i (z) = −

z(q2 − 1)

1− q2z
i > j

R
jj∗
ii∗ (z) = −

z(q2 − 1)q−2i

1− z R
j∗j
i∗i (z) = −(−1)|j |

q2 − 1

1− q2z
i < j.

(15)

TheR-matrix elements given in (11), (14) and (15) obey the Yang–Baxter equation on any
tensor product of three modules chosen in{V, V ∗}:

RW1W2(z)RW1W3(zw)RW2W3(w) = RW2W3(w)RW1W3(zw)RW1W2(z)

Wi ∈ {V, V ∗} i = 1, 2, 3.
(16)
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On each tensor product of two modulesV or V ∗, the unitarity condition is satisfied:∑
k,l

(−1)|k|·|l|Rnmlk (z
−1)Rklij (z) =

∑
k,l

(−1)|k|·|l|Rn
∗m∗
l∗k∗ (z

−1)Rk
∗l∗
i∗j∗(z) = (−1)|i|·|j |δi,mδj,n∑

k,l

(−1)|k|·|l|Rn
∗m
l∗k (z

−1)Rkl
∗

ij∗ (z) =
∑
k,l

(−1)|k|·|l|Rnm
∗

lk∗ (z
−1)Rk

∗l
i∗j (z) = (−1)|i|·|j |δi,mδj,n.

(17)

Integrable models related to finite-dimensional representations ofsl(n|m) have been
considered quite extensively ([15–17] and references in [20, 21]) in context with link
polynomials [22] and with one-dimensional systems of interacting electrons [23].R-matrices
related to the vector representation ofUq(sl(n|m)) have first appeared implicitly in solutions of
the Yang–Baxter equation for a particular nested model [24]. Later, rational and trigonometric
solutions of the Yang–Baxter equation associated togl(n|m) have been studied (see [20] for
references).

4. The diagonal vertex model

Boltzmann weights{R̂klij (z)} of an integrable vertex model follow from solutions{Rklij (z)} of
the graded Young–Baxter equation by the transformation

R̂klij (z) = (−1)|k|·|l|Rklij (z). (18)

In the remainder, the operator̄R(z) = PgrR(z) will also be used. The graded permutation
operatorP gr is defined byP gr(w1⊗ w2) = (−1)|w1|·|w2|w2⊗ w1.

In this section, vertex models are constructed from the rational limits of theR-matrices
given in the preceding section. Expressions (11), (14) and (15) may be rewritten with the
replacementsq = eε andz = e−2εu. In the limit ε → 0 the Lie-superalgebra symmetry of the
R-matrix is restored. From theUq(ŝl(2|1)) R-matrices one obtains

Rklij (u) = Rk
∗l∗
i∗j∗(u) =

u

u + 1
δi,kδj,l + (−1)|i|·|j |

1

u + 1
δi,lδj,k

Rkl
∗

ij∗ (u) =
u

u− 1
δi,kδj,l − (−1)|k|

1

u− 1
δi,j δk,l

Rk
∗l
i∗j (u) =

u + 1

u
δi,kδj,l − (−1)|i|

1

u
δi,j δk,l .

(19)

In the following theR-matrices will also be expressed in terms of the graded permutation and
monoid operators or the quadratic CasimirC of sl(2|1):

RVV = RV ∗V ∗ = u

u + 1

(
id +

1

u
P gr

)
= id − 1

u + 1
1(C)

RVV ∗ = u

u− 1

(
id − 1

u
Ogr

)
= id − 1

u− 1
1(C)

RV ∗V = u + 1

u

(
id − 1

u + 1
Ogr

)
= id − 1

u
1(C).

(20)

According to (19) the action of the graded monoid operatorOgr onV ⊗V ∗ andV ∗⊗V is given
byOgr(v1⊗v∗j ) = δi,j

∑
k=0,1,2(−1)|k|vk⊗v∗k andOgr(v∗i ⊗vj ) = δi,j (−1)|i|

∑
k=0,1,2 v

∗
k⊗vk.

To each link of a regular diagonal lattice (see figure 1) a statistical variable is associated
taking either values inV orV ∗. The modulesV andV ∗ are assigned to the lines according to
the alternating sequence

· · · ⊗ V ⊗ V ∗ ⊗ V ⊗ V ∗ ⊗ V ⊗ V ∗ ⊗ V ⊗ (21)

on the diagonal lines pointing from bottom left to top right and according to

· · · ⊗ V ⊗ V ⊗ V ∗ ⊗ V ∗ ⊗ V ⊗ V ⊗ V ∗ ⊗ V ∗ ⊗ V ⊗ V ⊗ · · · (22)
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Figure 1. The diagonal vertex model. The
evolution operator is represented by the section
between the thick dotted lines. Arrows pointing
to northwest or northeast distinguish links with
modulesV from those with modulesV ∗ (arrows
pointing southwest or southeast).

Figure 2. TheR-matrices.

Figure 3. The transfer matrixT inh(x, u). Arrows pointing
up or right represent links with the moduleV and the
remaining ones links with the moduleV ∗.

on the other diagonals. To the crossings, Boltzmann weights (18), (19) varying with two
parametersx andu are associated. The assignment of the indices as well as the dependence
on x andu are indicated in figure 2. The model is considered for small values ofx and large
values ofu. Thus expansions inx and 1/u are expected to be appropriate. On this vertex
model, a particular evolution operatorT (x, u)may be introduced. Its graphical representation
is provided by the section of the lattice within the thick dotted lines shown in figure 1. Given
periodic boundary condition in the horizontal direction, the evolution operator can be related to
the row-to-row transfer matrix of the corresponding vertex model with horizontal and vertical
links (see figure 3). The latter has modulesV andV ∗ associated to its horizontal links following
sequence (21). An additional inhomogenity is allowed for by dividing the lattice into vertical
strips each of them including four vertical lines. To the vertical lines of every second strip the
modulesV andV ∗ are assigned to according to the sequenceV ⊗V ∗⊗V ∗⊗V . In these strips
the assignment of indices and arguments of the Boltzmann weights to the links is obtained from
the one shown in figure 2 by means of a clockwise rotation byπ/4. To the vertical lines in the
remaining strips the modules are associated according to the sequenceV ∗⊗V⊗V ∗⊗V . Within
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these strips the assignment ofR-matrices indicated in figure 2 applies withx = 0. Imposing
again periodic boundary conditions in the horizontal direction the transfer matrixT inh(x, u) :
(⊗V ⊗V ∗⊗V ∗⊗V ⊗V ∗⊗V ⊗V ∗⊗V )N → (⊗V ⊗V ∗⊗V ∗⊗V ⊗V ∗⊗V ⊗V ∗⊗V )N is
represented by a horizontal section of the lattice model including four neighbouring horizontal
lines as shown in figure 3. This transfer matrixT inh(x, u) may be decomposed into transfer
matricesT (a)(x, u), a = 1, 2:

T inh(x, u) = T (2)(x, u)T (1)(x, u)T (2)(x, u)T (1)(x, u). (23)

Each transfer matrixT (a)(x, u) includes a single horizontal line with the auxiliary spaceV
(V ∗) for a = 1 (a = 2). The rational limit of the Yang–Baxter equations (16) implies the
commutation of any two transfer matricesT (a)(x, u), T (b)(x ′, u′), a, b = 1, 2. Thus two
composite transfer matricesT inh(x, u) andT inh(x ′, u′) commute. Due to the initial condition
Rk li j (0) = Rk

∗l∗
i∗j∗(0) = δi,l δj,k and the rational limit of the unitarity property (17), the action of

the vertical strips withx = 0 amounts to a diagonal shift in the southwest–northeast direction.
Consequently, the action of the product(T inh(x, u))2 is equivalent to the action of the evolution
operatorT (x, u) of the diagonal lattice model. In figures 1 and 3, the quadratic regionsI–IV
enclosed by the dotted lines indicate corresponding sections ofT (x, u) andT inh(x, u). The
reasoning given above is a generalization of the argument presented in [25] for a homogeneous
eight-vertex model.

The integrable vertex model proposed in this section may be studied by means of
the algebraic Bethe ansatz. Since the transfer matricesT (a)(x, u) commute, the spectrum
of T inh(x, u) can be obtained by diagonalizingT (1)(x, u) and T (2)(x, u) separately. The
corresponding monodromy matricesT (a)ji (x, u) satisfy the commutation relations∑
k,l

Rmnkl (x)T
(1)k
i (xx ′, u)T (1)lj (x ′, u) =

∑
k,l

T
(1)n
l (x ′, u)T (1)mk (xx ′, u)Rklij (x)∑

k,l

Rm
∗n∗

k∗l∗ (x)T
(2)k∗
i∗ (xx ′, u)T (2)l

∗
j∗ (x ′, u) =

∑
k,l

T
(2)n∗
l∗ (x ′, u)T (2)m

∗
k∗ (xx ′, u)Rk

∗l∗
i∗j∗(x).

(24)

Starting from theRTT-equations (24) the algebraic Bethe ansatz procedure outlined in [26]
may be adopted. By now, a variety of vertex models or spin chains based on representations
of the Lie superalgebrassl(2|1) andgl(2|1) have been investigated by means of this method
(see [16,17,27] and references given there). In particular, the algebraic Bethe ansatz has been
used in a study of another staggered vertex model involving the vector representation ofsl(2|1)
and an inhomogeneity in the spectral parameter [17].

5. The relation to the network model

Returning to the diagonal lattice model, let us denote the pair of horizontal and vertical
coordinates of a link bym = (m1, m2). Two links with positionsm andn may be chosen
on the lattice such that the moduleV is assigned to the link atm and its dual moduleV ∗ to
the link atn. Then the two-point functionP i,j

∗
m,n(x, u) is introduced as the probability that the

statistical variableslm andln take the valuesvi andv∗j , respectively:

P i,j
∗

m,n(x, u) =
∑
{lk}
δlm,vi δln,v∗j

8N−1∏
t1=0

8M−1∏
t2=0

R̄
l(t1,t2+1),l(t1+1,t2+1)
l(t1,t2),l(t1+1,t2)

(x, u). (25)

The right-hand side has been written in terms of the matrix elements ofR̄(u) = P grR(u).
To facilitate notation, the indices of the latter do not distinguish between links with module
V and those withV ∗. The partition function is normalized to one for the periodic boundary
condition in the vertical direction. In this case, the introduction of a modified evolution operator
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Figure 4. The modified evolution operator of the vertex model.

T̃ (x, u) for the diagonal network model turns out to be useful. In the pictorial representation
it corresponds to the section between the dotted lines in figure 4.T̃ (x, u) acts on the space of
states(⊗V ⊗ V ∗)4N . Within a block(⊗V ⊗ V ∗)4 the links may be labelled from 0 to 7 as
indicated in figure 4.

For thesl(2|1)-model one finds from (19)

lim
x→0

R̄V V (x) = lim
x→0

R̄V ∗V ∗(x) = id (26)

lim
u→±∞ R̄V

∗V (u) = lim
u→±∞ R̄V V

∗(u) = Pgr . (27)

Thus in the limitx → 0,u→∞ T̃ (x, u) reduces to the identity operator. An expansion inx

and 1/u yields

ln T̃ (x, u) = −(16N ln(1 +x) + 8N ln(u + x)(u− x − 1)− 8Nx2 + O(x3))id

+(2x − 2x2 + O(x3))

8N−1∑
n=0

P
gr

n,n+2

+

(
2x

(u + x)(u− x − 1)
+

2x2

(u + x)2(u− x − 1)2
+ O

(
x3

u6

)) 8N−1∑
n=0

O
gr

n,n+1

+U(x, u) (28)

where the operatorsOgr

n,n+1 onWN act onVn⊗V ∗n+1 orV ∗n ⊗Vn+1 as the monoid operator and as
the identity operator on the remaining part ofWN . Similarly,P grn,n+2 acts onVn ⊗ V ∗n+1⊗ Vn+2

or V ∗n ⊗ Vn+1⊗ V ∗n+2 according toP gr13 (a ⊗ b ⊗ c) = (−1)(|a|·|b|+|a|·|c|+|b|·|c|) c ⊗ b ⊗ a and as
the identity elsewhere. The last termU(x, u) contains only commutators ofPgr andOgr :

U(x, u) = −2
x

u + x

N−1∑
k=0

([P (0,2)k , O
(0,1)
k ] + [P (6,8)k , O

(6,7)
k ] + [P (7,9)k , O

(8,9)
k ]) + 2

x

u− x − 1

×
N−1∑
k=0

([P (1,3)k , O
(1,2)
k ] + [P (2,4)k + P (3,5)k , O

(3,4)
k ] + [P (4,6)k + P (5,7)k , O

(5,6)
k ])

−
(

x

u + x
− x

u− x − 1

) N−1∑
k=0

([P (1,3)k , O
(0,1)
k +O(3,4)

k ]
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+[P (3,5)k , O
(2,3)
k −O(5,6)

k ] − [P 5,7)
k , O

(4,5)
k +O(7,8)

k ]

+[P (6,8)k , O
(5,6)
k +O(8,9)

k ] − [P (8,10)
k , O

(7,8)
k +O(10,11)

k ])

+
1

2

(
1

u + x
− 1

u− x − 1

)2 N−1∑
k=0

([O(1,2)
k , O

(0,1)
k −O(2,3)

k ]

−[O(3,4)
k , O

(2,3)
k +O(4,5)

k ] − [O(5,6)
k , O

(4,5)
k +O(6,7)

k ]

+[O(7,8)
k , O

(6,7)
k +O(8,9)

k ]) + O(x2) + O
( x
u2

)
. (29)

In (29) the graded permutation and monoid operators are abbreviated byP
(i,i+2)
k ≡ P gr8k+i,8k+i+2

andO(i,i+1)
k ≡ O

gr

8k+i,8k+i+1. For i > 7, the positions 8(N − 1) + i and i are identified. If

periodic boundary conditions in the vertical direction are applied to the product(T̃ (x, u))M ,
the contributions fromU(x, u) cancel. Then the partition function is given by

Z = ((1 +x)2(1 +x2)−1(u + x)(u− x − 1))−8NM

×trgWN

{
exp

(
M

8N−1∑
n=0

ln

(
1 +

2x

1 +x2
P
gr

n,n+2

)

+M ln

(
1 +

2x

(u + x)(u− x − 1)

) 8N−1∑
n=0

O
gr

n,n+1

)}
. (30)

Here trgWN
denotes the graded trace over the space of statesWN = (⊗V ⊗ V ∗)4N . The

remainder of this section specializes to the caseN = pM, p ∈ N . In the nonrational case
each term in the expansion of the partition sum is represented by a link [28] built from the
braid, the monoid and the identity operators. Fori 6= j , the two-point functionP i,j

∗
m,n(x, u)

selects all the links with the positionsm, n placed on different components of the link. In the
rational limit the braid operator is substituted by the permutation operator. The set of links
generated only from the identity and the monoid operators in (30) coincides with the links of
a diagonal lattice model of Chalker–Coddington type [11]. In contrast to the lattice model
construction described in the preceding section, all lattice links of a Chalker–Codington-type
model with even horizontal position carry the moduleV while the dual moduleV ∗ is assigned
to all links with odd horizontal position. Thus only two types of vertices arise. An anisotropic
version of the model has Boltzmann weights

Wk∗l
i∗j (y) = δi,kδj,l + (−1)|i|yδi,j δk,l Wkl∗

ij∗ (y) = δi,kδj,l + (−1)|k|yδi,j δk,l . (31)

Here i, j, k, l refer to the lower left and right and to the upper left and right entry of each
diagonal vertex, respectively. Periodic boundary conditions are applied in both directions.
The model consists out of 2M raws of links. To relate horizontal and vertical positions of both
lattice models, an evolution operatorT CC(y) is introduced for the Chalker–Coddington-type
model as indicated by the dotted lines in figure 5 where the lattice links with horizontal positions
m̃1 = 8n + i, i = 0, 1, . . . ,7 are specified. For these links, the vertical positionm̃2 = 0 is
introduced. The periodic boundary condition in the horizontal direction of the diagonal vertex
model yields a periodic boundary condition with respect to the vertical positionm̃2. T CC(y)
acts on the space(⊗V ⊗ V ∗)4N . The appropriate mappingσ : XN,M → YN,M of a subset
XN,M of lattice positions{m1, m2} of the network model in section 4 to the setYN,M of lattice
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Figure 5. The network model.

positions{m̃1, m̃2} of the Chalker–Coddington-type model is given by

σ(8n, 2l) = (8n, 2l) σ (8n + 4, 2l + 4) = (8n + 4, 2l + 1)

σ (8n + 1, 2l + 3) = (8n + 1, 2l + 1) σ (8n + 5, 2l) = (8n + 5, 2l)

σ (8n + 2, 2l + 5) = (8n + 2, 2l + 1) σ (8n + 6, 2l + 3) = (8n + 6, 2l + 1)

σ (8n + 3, 2l) = (8n + 3, 2l) σ (8n + 7, 2l + 5) = (8n + 7, 2l + 1)

(32)

and
σ(8n, 2l + 3) = σ(8n, 2l + 4) = σ(8n, 2l + 5) = (8n, 2l + 1)

σ (8n + 1, 2l − 2) = σ(8n + 1, 2l − 1) = σ(8n + 1, 2l) = (8n + 1, 2l)

σ (8n + 2, 2l) = σ(8n + 2, 2l + 1) = σ(8n + 2, 2l + 2) = (8n + 2, 2l)

σ (8n + 3, 2l + 3) = σ(8n + 3, 2l + 4) = σ(8n + 3, 2l + 5) = (8n + 3, 2l + 1)

σ (8n + 4, 2l − 1) = σ(8n + 4, 2l) = σ(8n + 4, 2l + 1) = (8n + 4, 2l)

σ (8n + 5, 2l + 3) = σ(8n + 5, 2l + 4) = σ(8n + 5, 2l + 5) = (8n + 5, 2l + 1)

σ (8n + 6, 2l − 2) = σ(8n + 6, 2l − 1) = σ(8n + 6, 2l) = (8n + 6, 2l)

σ (8n + 7, 2l) = σ(8n + 7, 2l + 1) = σ(8n + 7, 2l + 2) = (8n + 7, 2l)

(33)

with n = 0, 1, . . . , N−1 andl = 0, 1, . . . ,M−1. In (33) the vertical positionsm2 = −1 and
m2 = −2 are identified withm2 = 8M − 1 andm2 = 8M − 2, respectively. A link composed
out of l monoid operators from (30) and identity operators has a weightvl ≡ ( 2x

(u+x)(u−x−1) )
l .

Thus the two-point function̂P i,j
∗

m,n(y) obtained fromP i,j
∗

m,n(x, v) after discarding all links with

contributions of the permutation operators equals the two-point functionQ
i,j∗
σ(m),σ (n)(y) of an

anisotropic Chalker–Coddington model ifm andn are chosen from the subsetXN,M :

P̂ i,j
∗

m,n(y) = exp

(
y

d

dv

)
P i,j

∗
m,n(x, v)

∣∣∣∣
x=v=0

= Qi,j∗
σ(m),σ (n)(y) for m,n ∈ XN,M. (34)
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